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Abstract 

Tropical cloud forests play a critical role in global carbon storage, yet their 

sequestration dynamics remain understudied compared to lowland tropical 

forests. This study investigates carbon sequestration in planted, naturally 

regenerated, and old-growth forest sections at Cloudbridge Nature Reserve, 

Costa Rica. Data were collected from fifteen 10 × 10 m plots across forest types 

established at different times: planted (2008, 2009, 2011), natural regrowth 

(1988, 2004, 2008), and old growth (last logged in the 1930s). Diameter at 

breast height (DBH), tree height, canopy cover, and slope were measured, and 

above- and below-ground biomass were estimated using allometric equations. 

Total carbon was calculated and converted into CO₂ equivalents. Results show 

that old-growth forests store substantially higher carbon (1.57 t CO₂/ha) than 

younger forests, reflecting their advanced structural complexity. Natural 

regrowth plots sequestered slightly more carbon (0.27–0.31 t CO₂/ha) than 

planted plots (0.25–0.27 t CO₂/ha), although planted forests displayed 

relatively rapid early growth. Generalized Additive Models revealed forest age 

as the strongest predictor of sequestration, while slope and canopy cover 

showed weak, non-significant effects. Limitations include small sample size, 

restricted plot accessibility, and exclusion of trees <10 cm DBH and soil carbon 

pools, likely leading to underestimates of total sequestration. This study 

provides baseline data for long-term monitoring of carbon dynamics in tropical 

montane forests and highlights the importance of both reforestation and 

natural regeneration in enhancing carbon storage. Continued monitoring and 

expanded datasets are recommended to refine sequestration estimates and 

guide climate change mitigation strategies.  
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1. Introduction  

Climate change, along with the resulting global warming, stands as the central issue of the 21st 

century, with widespread negative effects on all life on Earth, leading to significant losses and 

damages to both nature and people. Global warming is altering the biophysical landscape in 

unprecedented ways, bringing extreme weather events, extended droughts, rising sea levels, and 

melting glaciers (White, 2024). These changes are undeniably caused by human activities, 

primarily through the emission of greenhouse gases that have subsequently caused global warming, 

leading to a global surface temperature increase of 1.1°C above pre-industrial levels during the 

period from 2011 to 2020 (IPCC, 2023).  

Achieving net zero CO2 or greenhouse gas (GHG) emissions necessitates significant and rapid 

reductions and cuts in CO2 and non-CO2 GHG emissions. These measures aim at slowing down the 

rate of global warming and mitigating further negative impacts. Equally important is the support of 

carbon sinks and sequestration methods—natural processes, technologies, and practices that 

absorb and store carbon dioxide from the atmosphere (IPCC, 2023).  

Reforestation stands out as one of the most effective natural climate solutions due to its significant 

carbon-sequestration potential (Cerasoli et al., 2021). Forests, as the largest terrestrial carbon 

reservoirs, play a vital role in mitigating global warming by absorbing approximately 2.6 billion 

tons of carbon dioxide annually—around one-third of the CO2 emissions generated from burning 

fossil fuels (Xie et al., 2024). By serving as substantial carbon sinks, reforestation efforts directly 

mitigate emissions, supporting both short- and long-term climate change goals (Zhang et al., 2023). 

Beyond carbon storage, reforestation helps cool land and air surfaces by increasing precipitation 

and atmospheric moisture (Benetó, 2022). In contrast, deforestation and poor forest management 

contribute to climate change by releasing stored carbon, disrupting plant diversity, and reducing 

ecosystem services (Yadav et al., 2022). Reforestation not only addresses these environmental 

challenges but also promotes ecological stability and biodiversity, making it a critical tool in the 

fight against climate change (Zhang et al., 2023).  

Costa Rica as a country has been widely recognised for its successful reforestation efforts, which 

have led to the reversal of deforestation and the restoration of its natural ecosystems. Over the last 

15 years the country made significant strides in land restoration, increasing its forest cover from 

just 25% to 57% through reforestation efforts (Copernicus EU, 2023). A reserve that was created to 

restore and protect cloud forest habitats in Costa Rica that have been degraded by agriculture and 

logging, is Cloudbridge Nature Reserve. Established in 2002, the reforestation and conservation 

project is located in the Talamanca Mountains of Costa Rica (Cloudbridge, n.d.) Their efforts to 

protect and restore tropical forests are crucial because tropical regions in particular have a 

significant carbon sequestration potential. According to Paulick et al. (2017, more than 50% of the 

carbon stored in aboveground vegetation is assumed to be located in the tropics. This is due to their 

dense, fast-growing trees, driven by warm temperatures and abundant rainfall, as well as their rich 

plant biodiversity (Artaxo, 2022).  

While all tropical forests are important for their ecological roles, cloud forests, such as the one 

Cloudbridge has reforested, have unique characteristics and play critical roles in biodiversity, 

water regulation, and carbon sequestration. These forests, typically found in tropical and 

subtropical mountainous regions, are particularly sensitive to climate change, logging, land-use 

change, making reforestation critical (Karger et al., 2o21). Tropical montane forests have received 

less research attention compared to tropical lowland forests, and their role in carbon storage 

remains poorly understood. This underscores the need for further studies to clarify their 

contribution to carbon sequestration.​
Cloudbridge Nature Reserve has reforested former cattle and crop lands, resulting in three 

distinct forest types: replanted areas, naturally regenerated areas, and old-growth forest 

(Cloudbridge, n.d.). This research seeks to examine the carbon sequestration rates across three 
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distinct forest types, with a particular focus on sections planted in different years.The replanted 

forest includes sections from 2008, 2009, and 2011, while the natural regrowth areas are from 

1988, 2004, and 2008. The old-growth forest, last logged in the 1930s, represents a single time 

point for comparison. By analysing total carbon sequestration rates at these available time points, 

the study reveals how these rates evolve over time within each forest type, reflecting the unique 

successional stages of each forest. The goal is to assess sequestration dynamics within each forest 

type and establish baseline data for long-term monitoring. This foundational information 

enhances the understanding of carbon storage in these ecosystems and supports conservation 

strategies aimed at mitigating climate change, particularly in Cloudbridge's efforts to enhance its 

overall carbon storage. 

 

The research addresses two key questions: 

 

1.​ How do carbon sequestration rates vary and change over time between planted, naturally 

regenerated, and old-growth tropical cloud forest at Cloudbridge Nature Reserve? 

 

2.​ How are total carbon sequestration rates influenced by slope, canopy cover, and age? 

 

2. Methodology  

2.1 Study area ​ ​ ​ ​ ​ ​ Figure 1- Location of Cloudbridge.​
​ ​ ​ ​ ​ ​ ​ ​ Note. Derived from (openstreetmap.org). 

Cloudbridge Nature Reserve is situated in the 

south-central region of Costa Rica, on the southern 

Pacific slopes of the Talamanca mountain range, adjacent 

to Chirripó National Park, a UNESCO World Heritage 

Site (United Nations Educational, Scientific and Cultural 

Organization, (n.d.)).​
 Talamanca Range–La Amistad Reserves / La Amistad 

National Park [World Heritage List No. 205]. UNESCO 

World Heritage Centre. Retrieved September 8, 2025, 

from UNESCO websiteThe reserve spans 280 hectares of 

tropical premontane and montane cloud forest habitat, 

with elevations ranging from 1500 to 2650 metres. While 

only small portions of the reserve contain old growth 

forest (around 50 ha), the majority of the land consists of 

abandoned or   repurposed pastures that are in various stages of natural succession, gradually 

returning to their original climax forest state. The planted areas were established in sections over 

different years, with the oldest sections now reaching up to 16 years. The naturally regenerated 

areas vary significantly in age, ranging from approximately 15 to 40 years. Any area older than 70 

years is classified as an old growth forest (Cloudbridge, n.d.). 

2.2 Field data collection  

To calculate and understand how carbon sequestration rates change over time in each forest type 

at Cloudbridge, it was essential to sample the trees present in all areas; the old growth forest, the 

manually replanted areas and naturally regenerating zones. For this research, randomly selected 
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plots were selected from each forest type based on the available planting years. In the planted 

forest sections, two plots each were measured for the years 2008, 2009, and 2011. In the natural 

regrowth sections, two plots each were marked for the years 1988, 2004, and 2008. The 

old-growth forest, which has been undisturbed since the 1930s, includes three plots representing 

a single age group as no other time point was available in this forest type. Each plot covered a 

10-metre by 10-metre area, and all trees within the plots were tagged with a unique identifier. For 

each tagged tree, the diameter at breast height (DBH), the tree height, the average canopy cover 

and slope were recorded. Trees partially within a plot were included if at least half of the trunk fell 

inside the boundary. Dead and diseased trees were also measured to ensure a comprehensive 

assessment of carbon sequestration, capturing all sources of carbon storage and release. This 

analysis was conducted between August and October 2024. 

2.2.1 Plot selection 

Plots were selected using a randomised pattern generated in QGIS. First, a raster layer was added, 

which served as the basis for selecting random points across the forest area. From these randomised 

points, only those accessible by trails were chosen as plot locations. A GPS device was then used to 

locate these points in the field, where plots were established.​
In cases where multiple plots needed to be established within a restricted area due to available forest 

age groups, the same randomisation procedure in the given age section was applied to ensure 

unbiased placement. This approach ensured that plots were distributed randomly while also meeting 

the study’s requirements for age-based grouping within each forest type. 

Figure 2 depicts each of the plots chosen at Cloudbridge Reserve. More specifically, for the planted 

sections two plots were selected on El Jilguero from the year 2008, two plots on the Los Quetzales 

trail planted in 2009 and two plots on El Jilguero on from the 2011 sections. Within the Natural 

Regrowth section, two plots were selected in the 1988 section on the El Jilguero trail, two plots on 

Montaña being regrown since 2004, and two more on the 2008 section on El Jilguero. Three Old 

Growth Plots were chosen on El Jilguero, Sentinel and Montaña.  

Table 1: Map codes for Figure 2 

Abbreviated Name 

on Map 

Trail Name Forest Type Age of Forest 

EJ PLA 2008A El Jilguero Planted 2008A 

EJ PLA 2008B El Jilguero Planted 2008B 

LQ PLA 2009A Los Quetzales Planted 2009A 

LQ PLA 2009B Los Quetzales Planted 2009B 

EL PLA 2011A El Jilguero Planted 2011A 

EL PLA 2011B El Jilguero Planted 2011B 
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EJ NR 1988A​  El Jilguero Natural Regrowth 1988A 

EJ NR 1988B El Jilguero Natural Regrowth 1988B 

MON NR 2004A Montaña Natural Regrowth 2004A 

MON NR 2004B Montaña Natural Regrowth 2004B 

EJ NR 2008A​  El Jilguero Natural Regrowth 2008A 

EJ NR 2008B El Jilguero Natural Regrowth 2008B 

EJ OG El Jilguero Old Growth 1930 

SENTI OG Sentinel Old Growth 1930 

MON OG Montaña Old Growth 1930 

The exact coordinates for each plot can be found in Appendix Table A1.​
​
On the map, yellow areas represent planted forests, light green indicates naturally regenerated 

forests, and dark green denotes old-growth forest. Dark blue dots mark the locations of the research 

plots along the designated trails, with white labels specifying the trail name, forest type, and 

corresponding forest age. 
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Figure 2- Cloudbridge Map with Chosen Plots.​
Note. Derived from QGIS November 2024 

 
2.2.2 DBH (Diameter at Breast Height) measurements ​
 

DBH (Diameter at Breast Height) measurements were conducted by classifying tree size at 1.3 metres 

from the ground, approximating the breast height of an average person. Measurements were taken 

for trees with a minimum diameter of 10 cm. To ensure consistency, a bamboo pole was marked at 

1.3 metres and used as a reference for measuring tree diameters with a diameter tape. For trees too 

large for the diameter tape, the circumference was measured with a standard measuring tape and 

subsequently converted to diameter. On sloped terrain, measurements were taken from the upslope 

side. If a tree trunk split into multiple stems below the DBH mark (multi-stem), all stems were 

measured at breast height.​
​
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2.2.3 Tree Height Measurements and Calculations 

 
Tree height was measured using the Suunto Height Meter PM-5/1520 clinometer. The procedure 

involved positioning the observer 15 or 20 metres from the tree, uphill, and using the clinometer’s 

scale to take two readings. The first reading measured the distance from the observer’s eye level to 

the top of the tree, and the second from the observer’s eye level to the base. The total tree height was 

calculated by adding these two values together (ManulsLib, (n.d.). In cases where terrain or obstacles 

made it impossible to maintain a 15 or 20-metre distance, a suitable random distance was chosen, 

and the percentage scale on the clinometer was used. From this distance, two percentage readings 

were taken: from eye level to the top and from eye level to the base. These percentages were then 

summed and applied to the following formula: 

Tree Height = (Percentage/10) × Distance 

This equation accounts for the total tree height (Williams et al., 1994). Figure 3 visualises the 

instructions for both uphill and downhill measurements. 

 

 

Figure 3- Height Measurement Instruction.​
Note. Derived from Suunto PM-5/ PM-5/ 1520 User’s Guide. 

​
2.2.4. Canopy cover measurement 

To assess light availability, canopy cover measurements were taken with a spherical densiometer at 

all four edges of each plot, oriented in each of the four cardinal directions. The average canopy cover 

for each plot was calculated and subsequently compared across all plots. Measurements were 

consistently taken in the morning to ensure similar weather conditions and light intensity, 

minimising variability due to time of day. 
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​
2.2.5. Slope  

To obtain slope rates, a Digital Elevation Model (DEM) of the study area was sourced, providing a 3D 

representation of the terrain. The DEM was imported into QGIS, allowing for spatial analysis. This 

process enabled the extraction of slope values corresponding to each specific measurement point 

within the study plots. 

2.2.6 Species identification 

For biomass allometric equations requiring wood density data, accurate species identification for 

trees in each plot is ideal. However, due to the complexity of cloud forest ecosystems, where trees are 

diverse and often very tall, detailed species identification is challenging ,just as at the study sites in 

Cloudbridge. Therefore, a practical approach was employed: identifying the most common species in 

each forest type, recording their wood density values, and calculating an average wood density for 

each forest type.  

2.3 Data analysis  

Generally, all data analysis, calculations and statistical testings with respective graphs were run in R 

Studio. For each graph, the colours of the forest types were chosen respectively to the colours of those 

in the Cloudbridge map. Yellow depicts the planted forest, light green the natural regrowth sections 

and dark green stands for the old growth forest.  

2.3.1 Rationale and approach behind analysing carbon sequestration trends and 

their influences 

This study investigates how carbon sequestration rates vary across each of three distinct forest types, 

reflecting their unique successional stages. Due to differences in age and ecological conditions, direct 

comparisons across types could introduce biases related to species composition and growth 

dynamics. Instead, the analysis focuses on total sequestration rates at multiple time points within the 

planted and natural regrowth section, and one time point in the old growth section, capturing 

within-type variations without confounding factors from mixed comparisons of planted, naturally 

regenerating, and old-growth areas. 

As this research does not allow directly answering the question of whether one forest type sequesters 

more carbon than another, due to limited possibilities and ecological differences across forest types, 

it instead captures the sequestration dynamic within each type. Follow-up research with extended 

observations over multiple years could provide a more direct comparison of carbon sequestration 

dynamics across forest types. However, it is important to account for various ecological factors, such 

as species composition, which may vary between the forest types and influence the results. 

The research aims to establish baseline data on sequestration patterns within each forest type, which 

will support future assessments as additional data points are gathered. By exploring how 

environmental factors like slope, canopy cover, and age correlate with sequestration rates, the study 

provides valuable insights into the sequestration potential of each forest type. Ultimately, this 

foundational data aims to inform conservation and management strategies to enhance carbon 

storage and support climate change mitigation efforts. 

2.3.2 Carbon sequestration calculations ​
2.3.2.1 Above-ground carbon calculation 

In forest carbon research, biomass allometric equations are essential tools for estimating 
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above-ground carbon storage. Two influential models used for calculating above-ground biomass 

(AGB) include the Brown et al. (1989) and Chave et al. (2005) equations. The Brown model, among 

the earliest generalised allometric models, estimates biomass based solely on DBH (Diameter at 

Breast Height). Its simplicity and adaptability across forest types have contributed to its widespread 

adoption. However, some researchers have noted that this model may lack precision when applied to 

forests with diverse species and varying wood densities (Walker et al., 2017). 

To enhance precision, Chave et al. (2005) introduced a model incorporating wood density alongside 

DBH, aiming to account for species-specific traits that influence biomass estimates. This model is 

often considered more accurate in mixed-species and tropical forests due to its inclusion of wood 

density as an additional variable (Huy et al., 2016; Chave et al., 2015). Nonetheless, others argue that 

this added complexity may not substantially improve accuracy in studies where species data is 

incomplete (Pati et al., 2022). 

The highest adjusted R² value (0.97) for allometric equations estimating above-ground biomass in 

wet tropical forests, as provided by Brown et al., is achieved with the following equation (Brown et 

al., 1989; Walker et al., 2017): 

AGB = exp(-3.1141 + 0.9719 * ln(D2 * H))  

where D represents diameter at breast height (DBH), and 𝐻 is tree height. 

The second used above-ground biomass equation is by Chave et al., which have an adjusted R² value 

of 0.99 for tropical forests, are as follows (Chave et al. 2015; Walker et al. 2017): 

AGB = exp(-2.977 + ln(ρ * D² * H)) 

where D represents diameter at breast height (DBH), 𝐻 is tree height and ρ stands for wood density. 
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Figure 4- Difference between AGB values for all data sets of both allometric equations.​
Note. Derived from R Studio. 

In this study, both Brown’s and Chave’s equations were applied to estimate carbon sequestration 

across plots. The varying above-ground biomass (AGB) levels are shown in Figure 4, with Brown’s 

equation represented in blue and Chave’s in orange. As shown, incorporating wood density values for 

the most common species in each forest type significantly increased AGB estimates when using 

Chave's equation. However, for the natural regrowth plots, Brown's and Chave’s estimates were 

similar when averaged wood densities for the dominant natural regrowth species were applied. While 

Chave’s equation is considered more technically accurate, it would have been ideal to use it 

consistently across all datasets. The challenge, however, lies in the incomplete species distribution 

data across forest types and gaps in wood density values for certain species, which introduces 

potential biases and uncertainties when applying Chave’s model. Given these limitations, and despite 

Chave’s model's technical advantages, Brown’s equation, tailored for tropical wet forests, was 

ultimately deemed more appropriate for this dataset and was thereby used for all following carbon 

equations. This decision aimed to reduce uncertainty by selecting a model better suited to the 

regional forest characteristics, given the incomplete species-level wood density information. 

Table A2 in the appendix mentions the most commonly observed species in each forest type and their 

respective wood density values. 

2.3.2.2 Below-ground carbon calculation 

 

Root biomass, often referred to as below-ground biomass (BGB), is a key component of carbon 

storage in forests. Due to the labour-intensive, challenging, and resource-demanding nature of 

directly measuring BGB, it is commonly estimated indirectly through equations that predict root 

biomass based on shoot (above-ground) biomass. Mokany et al. (2006) proposed the following BGB 

equation for tropical or subtropical moist forests and plantations (Mokany et al., 2006; Walker et al., 

2o17): 

 

BGB = 0.205 ×AGB  

2.3.2.3 Conversion of total biomass to carbon 

After summing AGB and BGB, it is essential to convert the total biomass to carbon. Most current 

estimates for tropical forest carbon pools and fluxes assume that all tissues (wood, leaves, roots) are 

composed of 50% carbon on a dry mass basis. However, according to Martin and Thomas (2011), a 

biomass-to-carbon conversion factor of 47.4% is considered the most reliable, analytically supported 

value for the carbon content of tropical hardwoods in natural forests (IPCC, 2006; Martin & Thomas, 

2011). 

Total Biomass = AGB + BGB 

Total Carbon = Total Biomass x 47.4% 

​
2.3.2.4 Total carbon sequestration calculation 

To calculate the total carbon sequestration rates, representing the CO₂ equivalent sequestered by a 

tree over its lifetime, an additional equation is required. Given that CO₂ comprises one carbon 

atom and two oxygen atoms, with atomic weights of 12 u for carbon and 16 u for each oxygen 

atom, the mass ratio of CO₂ to carbon is 44/12, or roughly 3.67. Therefore, to estimate the total 

amount of carbon dioxide sequestered by a tree, the tree's carbon weight was multiplied by 3.67 

(Fransen, 2024). 
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Total CO2 Weight = Total Carbon × 3.67  

By calculating the carbon content for each individual tree and summing these values within each 

plot, the total carbon sequestration rates can be compared between plots.  

2.3.2.5 Annual carbon sequestration calculation 

 

This study also initially aimed to estimate the annual sequestration rates across the three forest 

types. However, due to restrictions in the available data and limitations with the two main calculation 

approaches, the results were not included in this report. With additional data collected in the future, 

the following two approaches for calculating annual sequestration could be considered. 

 

Firstly, the average annual rate, calculated by dividing total carbon by forest age, assumes a constant 

sequestration rate over time. However, carbon sequestration rates typically vary, with younger 

forests sequestering carbon more rapidly during growth phases and slowing down as they mature 

(Grebner et al., 2022). This method oversimplifies these dynamics, failing to capture variations in 

sequestration across different forest types. Calculating annual sequestration rates by dividing total 

carbon sequestration by forest age only gives an average, not the actual rate at each specific time 

point. For this study this approach was neglected because it does not accurately reflect the temporal 

changes in sequestration, especially for younger forests where growth rates are not uniform (Ghazoul 

& Sheil, 2017).  

Secondly, the year-to-year rate method, on the other hand, was not suitable due to the limited 

number of data points available for certain forest types. With only three time points for planted 

forests and one for old-growth forests, calculating year-to-year differences would result in unreliable 

estimates, especially with such sparse data. This method was not used because it would introduce 

significant uncertainty and could lead to misleading interpretations. Given these limitations, more 

frequent data collection across a longer time span is necessary to obtain more reliable annual 

sequestration values (Penn State Extension, 2023).   

2.3.3 Statistical testing​
 

In terms of statistical testing, key variables, including DBH and tree height, were summarised 

through descriptive statistics to provide an overview of forest structure across all datasets and the 

three forest types, establishing baseline characteristics. Boxplots were generated to visually compare 

these measurements, highlighting variations in height and DBH among planted, natural regrowth, 

and old-growth forests to assess structural differences. Normality tests were then conducted on each 

dataset to assess data distribution and inform the selection of appropriate statistical methods. Total 

carbon sequestration values were subsequently calculated and plotted by time point and forest type 

to identify trends in sequestration over time within each forest category. Canopy cover and slope 

were analysed across forest types, with averages calculated and slope variability explored to gain 

further insights into how these variables vary across the different forest types. Finally, a Generalised 

Additive Model (GAM) was applied to investigate relationships between carbon sequestration and 

predictor variables, such as canopy cover, slope, and age, in order to identify significant patterns and 

nonlinearities influencing carbon sequestration. 

 

3. Results and Discussion 

 

3.1 Descriptive Statistics 

3.1.1 Summary statistics of DBH and Total Height  

 

Providing a table of summary statistics of each dataset provides the first numerical view of the of key 

statistical measures, including median, means, and quartiles. This gives a quick snapshot of each 

dataset’s central tendency, making it easier to compare them across different tree measurement 
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variables. Since DBH and Height are the key variables in each data set, emphasis was placed on 

them. 

 

Table 1- Table of Summary Statistics for each Data Set.​
Note. Derived from R Studio. 

 

As depicted in Table 1, this dataset offers a comprehensive view of tree structural 

attributes—diameter at breast height (DBH) and height—across planted, naturally regenerating, and 

old-growth forests in various stages of development. The planted plots (2008, 2009, and 2011) show 

relatively uniform DBH values, ranging from 10 to 32.7 cm, with maximum heights around 25.5 

metres. This suggests younger, actively growing trees. In contrast, natural regrowth plots that have 

more age variance between the years 1988, 2004, and 2008, display a broader DBH range, with some 

trees reaching up to 68 cm, indicating older, more established trees with more advanced structural 

development. Old-growth forests exhibit the most considerable size diversity, especially in Sentinel, 

where DBH reaches 99.2 cm and tree heights extend up to 46.75 metres. These old-growth metrics 

indicate significant structural complexity and biomass accumulation, critical for carbon 

sequestration. The differences in DBH and height hint at each forest type's unique growth patterns 

and stages of development. 
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3.1.2 Boxplot Overview of DBH and Total Height 

 

To further get insights into outliers and general tendencies and dispersion measures, box plots 

between all datasets for the variables DBH and Tree Height were created. 

 

For DBH:

 

Figure 5- Box Plots for DBH Values for each Data Set.​
Note. Derived from R Studio. 

 

This overview of boxplots as seen in Figure 5, further confirms that natural regrowth sections and old 

growth forests tend to have larger DBH values and more variability, particularly in older datasets 

(e.g., El Jilguero Natural Regrowth 1988b and Montaña Old Growth), indicating older, mature 

forests with greater diameter diversity. The Sentinel data shows the highest DBH median, 

emphasising that the old growth sections generally have the trees with the biggest diameters.  

Planted datasets show smaller DBH values, with more uniform growth. Significant outliers occur in 

each forest type. 
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For the Total Height: 

 

 

Figure 6- Box Plots for Total Height Values for each Data Set.​
Note. Derived from R Studio. 

 

In this boxplot summary, of tree heights across various datasets, shown in Figure 6, distinct patterns 

appear among the three forest types. Overall, tree height variability in both planted and natural 

regrowth sections is comparable, although average tree heights in planted sections are slightly higher 

than in natural regrowth. This is somewhat unexpected, as the 1988 section of natural regrowth is 

considerably older than any planted or younger regrowth sections, suggesting it should contain taller 

trees. These results indicate successful growth in the hand-planted trees and suggest that natural 

regrowth may take longer to achieve similar heights when left undisturbed. Old-growth forests (e.g., 

Montaña Old Growth, Sentinel Old Growth) show the tallest trees, with higher medians and wider 

interquartile ranges, characteristic of mature ecosystems where trees have had ample time to reach 

impressive heights. 

 

 

3.2 Normality test 

 

A normality test was conducted on each dataset to assess the distribution of the data, which 

facilitated the selection of appropriate statistical tests for subsequent analysis. Table 2 provides all 

Shapiro Wilk and p-values calculated.  

 

 

Data Set / Time Point Forest Type Results for Shapiro-Wilk Normality Test 

El Jilguero 2008a Planted Shapiro-Wilk W = 0.5687994 ​
p-value = 6.729475e-12 

El Jilguero  2008b Planted Shapiro-Wilk W = 0.5646377 ​
p-value = 1.376453e-10  

Los Quetzales 2009a Planted Shapiro-Wilk W = 0.6138226 ​
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p-value = 4.313711e-12  

Los Quetzales 2009b Planted Shapiro-Wilk W = 0.7380707 ​
p-value = 1.671192e-07  

El Jilguero 2011a Planted Shapiro-Wilk W = 0.7088794 ​
p-value = 9.763122e-11  

El Jilguero 2011b Planted Shapiro-Wilk W = 0.6848404 ​
p-value = 1.110733e-09 

El Jilguero 1988a Natural 

Regrowth 

Shapiro-Wilk W = 0.5141508 ​
p-value = 5.835884e-14  

El Jilguero 1988b Natural 

Regrowth 

Shapiro-Wilk W = 0.7117214 ​
p-value = 1.351572e-08  

Montaña 2004a Natural 

Regrowth 

Shapiro-Wilk W = 0.6105091  

p-value = 9.198453e-14  

Montaña 2004b Natural 

Regrowth 

Shapiro-Wilk W = 0.512578 ​
p-value = 1.123528e-13 

El Jilguero 2008a Natural 

Regrowth 

Shapiro-Wilk W = 0.6101491 ​
p-value = 1.024028e-12 

El Jilguero 2008b Natural 

Regrowth 

Shapiro-Wilk W = 0.6831589  

p-value = 1.035435e-09  

El Jilguero Old Growth Shapiro-Wilk W = 0.6264999 ​
p-value = 1.319382e-12 

Montaña Old Growth Shapiro-Wilk W = 0.7435051 ​
p-value = 3.444568e-12  

Sentinel Old Growth Shapiro-Wilk W = 0.7101948 ​
p-value = 2.413505e-07 

Table 2 - Results of Shapiro-Wilk Test on each Data Set.​
Note. Derived from R Studio. 

 

The Shapiro-Wilk test results indicate that for each dataset (both planted and natural regrowth at 

various time points, as well as old growth), the p-values are all very low  

(<< 0.05). This suggests that none of the datasets are normally distributed. The low p-values (much 

smaller than 0.05) furthermore indicate that the null hypothesis of normality for each time point and 

forest type. The Shapiro-Wilk W statistic varies, but overall, values below 0.75 often indicate strong 

deviations from normality, as seen in many of these given results. 

Regarding further implications on statistical testing, since none of the datasets meet normality 

assumptions, non-parametric tests for further tests are more suitable than parametric tests 

(Wasserman, 2006). The lack of normality for those datasets, typically seen in ecological and 

environmental datasets can be explained through various factors, such as species diversity, age and 

disturbance within the forests, environmental gradients, or localised conditions such as slope and 

canopy cover (Patil & Rao, 1994). 
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3.3.Carbon Sequestration Analysis 

3.3.1 Total Carbon Calculations 

 
After applying the given calculations for obtaining the AGB and BGB, and merging both data sets for 

each time point, the following total CO2 weights for the time points were calculated. 

 

Forest Type and Time Point Total Carbon Sequestration Values 

Planted forest from 2008 0.2514053 t CO2/ha 

Planted forest from 2009 0.2733983 t CO2/ha 

Planted forest from 2011 0.2599537 t CO2/ha 

Natural Regrowth Forest from 1988 0.3128579 t CO2/ha 

Natural Regrowth Forest from 2004 0.2724769 t CO2/ha 

Natural Regrowth Forest from 2008 0.2851661 t CO2/ha 

Old Growth Forest from 1930 1.565948 t CO2/ha 

Table 3 - Total Carbon Sequestration Values for each Time Point.​
Note. Derived from R Studio. 

 

 

Visualised in Bar Graphs these values are depicted as such: 
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Figure 7 - Total Carbon Sequestration Values for each Time Point in Bar Graphs.​
Note. Derived from R Studio. 

 
To further visualise the total carbon sequestration values in a line graph, better depicting the time 

difference between the time points, this graph shows further insights: 

 

 

Figure 8 - Total Carbon Sequestration Values for each Time Point in Line Graphs.​
Note. Derived from R Studio. 

 

As shown in Table 3 and Figures 7 and 8, the old-growth forest exhibits the highest carbon 

sequestration at 1.5659 t CO2/ha, reflecting its mature and extensive biomass characteristic of 

well-established ecosystems. This observation aligns with findings that mature, stable forest 

ecosystems, like old-growth forests, are highly efficient at long-term carbon storage due to their 

complex structures and biodiversity (Grebner et al., 2022). 

 

In comparison, natural regrowth forests demonstrate slightly higher carbon sequestration rates than 

the planted sections, with the 1988 natural regrowth forest having the highest sequestration at 

0.3129 t CO2/ha. This is followed by the 2008 and 2004 natural regrowth forests, with values of 

0.2852 t CO2/ha and 0.2725 t CO2/ha, respectively. Notably, the 2008 section of natural regrowth 

demonstrates a successful performance, nearly matching the sequestration levels of the much older 

1988 section, suggesting particularly effective growth during its early stages. The lower carbon 

sequestration rate in the 1988 section, despite its age, is notable and may be attributed to the slower 

establishment commonly observed in naturally regenerating forests. Without the benefit of planting 

or human intervention, natural regrowth must contend with more competition from pre-existing 

shrubs and other early colonising plants, which can slow early-stage tree growth and delay 

substantial carbon accumulation (Ghazoul & Sheil, 2017). 

 

For planted forests, the 2008, 2009, and 2011 sections sequester between 0.25 to 0.27 t CO2 per 

hectare, with the 2009 section achieving the highest value at 0.2734 t CO2/ha. This relatively 

consistent sequestration across the four-year span is not unexpected, given the short time frame, and 

suggests that significant variations in carbon accumulation are more likely to emerge as these forests 

mature. While the natural regrowth sections show slightly higher carbon values, the planted sections 



18 

appear competitive in their carbon accumulation, especially considering their younger ages. A likely 

reason for this is human facilitation in planted forests, which involves selecting suitable species and 

minimising competition, allowing for faster growth and greater initial carbon sequestration. As the 

planted and natural regrowth forests progress, their carbon sequestration values are expected to rise 

with the maturation of their structures. In contrast, the old-growth forest has likely reached its 

climax stage, with little potential for further carbon accumulation (Staples et al., 2019). 

 

Factors that are known for influencing the carbon sequestration potential of forests, and might differ 

between forest types at Cloudbridge, need to be studied more. Generally, abiotic factors include 

non-living components such as temperature, sunlight, and soil composition, which significantly 

affect the efficiency of photosynthesis and, consequently, carbon sequestration. The availability of 

sunlight is crucial for photoautotrophs to convert CO2 into organic carbon. Also, slopes impact 

carbon sequestration because they influence soil depth, moisture retention, and nutrient availability, 

all of which affect tree growth and biomass accumulation (Bonan, 2023).  

Secondly, biotic factors such as living organisms, including plants and microbes, play a vital role in 

carbon fixation. The health and diversity of these organisms can enhance the carbon sequestration 

process. For instance, different plant species have varying capacities to absorb CO2, which influences 

overall carbon storage. Furthermore, the condition of soil is essential for maintaining carbon 

reserves. Healthy soils with rich organic matter can store more carbon, while degraded soils may 

release stored carbon back into the atmosphere. Improving soil organic carbon is crucial for the 

health of terrestrial ecosystems. Moreover, climate change with altered climatic conditions can 

influence the effectiveness of carbon sequestration processes. Increased temperatures and altered 

precipitation patterns can affect plant growth and microbial activity, thereby influencing the overall 

carbon capture capabilities of ecosystems (Bonan, 2023). ​
For this research, the variables that emerged as the two most influential factors affecting carbon 

sequestration that could be analysed within the reserve, were canopy cover (availability of sunlight) 

and the slope, given their known impact on carbon storage levels. However, further research should 

be conducted on any of the other environmental factors possibly influencing carbon to possibly 

inform the reserve on what conditions and environments Cloudbridge can support to foster a steady 

carbon accumulation. 

 

3.4 Canopy Cover and Slope Analysis 

 

Before understanding and testing for the influences the variables of canopy cover and slope have on 

carbon sequestration, firstly an overview of the average canopy cover and slope were provided, and 

subsequently graphs of the individual slope values per data set were visualised. 
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Figure 9 - Average Canopy Cover Values by Forest Type.​
Note. Derived from R Studio. 

 

As illustrated in Figure 9, average canopy cover varies only slightly among the forest types, with 

values of 87.62% for planted forests, 90.74% for natural regrowth, and 90.05% for old-growth. This 

narrow range, spanning just over 3%, reflects a generally consistent canopy density across all forest 

types, suggesting healthy growth overall—particularly valuable for assessing the condition of both 

planted and naturally regrowth areas. 

 

While these canopy cover differences may not be statistically significant based on the current data, 

the marginally higher values in natural regrowth and old-growth forests could indicate more 

advanced structural development compared to planted forests.  If further studies at Cloudbridge were 

to confirm this as statistically significant, even small canopy cover variations might impact factors 

like light availability, soil moisture, and understory growth, all of which could affect carbon 

sequestration rates and overall ecosystem health (Ghazoul & Sheil, 2017). Notably, canopy cover does 

not appear directly related to forest age among these types, age portrayed within the forest types,  

suggesting it can serve as an independent variable in further testing of relationships between 

ecological factors and carbon sequestration. 

 

 

Figure 10 - Average Slope Values by Forest Type.​
Note. Derived from R Studio. 

 

In terms of average slope values, as visualised in Figure 10, these values vary across the forest types: 

26.28° in planted forests, 24.20° in natural regrowth, and 20.78° in old-growth forests. These 

differences suggest a slightly steeper terrain for the planted forests compared to the old-growth 

areas. Higher slopes can introduce environmental stressors, such as soil erosion and reduced water 

retention, potentially influencing tree growth and carbon sequestration. These conditions could also 

lead to differences in soil composition and nutrient availability, impacting the development and 

carbon storage potential of each forest type. Further statistical analysis attempts to confirm if these 

slope variations significantly affect biomass and carbon dynamics across the study area (Bonan, 

2023). 

 

As no significant difference in canopy cover was observed between the forest types with the current 
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data, a detailed breakdown of canopy cover across individual datasets is not provided. However, for 

slope values, which show notable variation across forest types as discussed, a graph has been 

included to illustrate this variation within the individual datasets. 

 

Figure 11 - Slope Values for Each Dataset by Forest Type.​
Note. Derived from R Studio. 

 

A visual inspection of Figure 11 indicates possible differences in slope values across datasets within 

each forest type, with planted forests generally showing higher slopes than natural regrowth and 

old-growth areas. This pattern hints at a potential systematic difference rather than purely random 

variation, although statistical testing would be necessary to confirm this hypothesis. However, this 

study has not delved further into these potential differences, as the main focus for this research is 

carbon sequestration.  

 

One reason for considering this observation as likely due to random variation is that the Cloudbridge 

Reserve is known for its highly variable slope across all forest types. Extensive field experience has 

shown that steep sections exist in every forest type, suggesting that slope may not differ 

systematically among them. With only fifteen data points, the available sample might not adequately 

capture this variability and is therefore more likely to reflect random fluctuations. 

 

Additionally, plot locations were specifically selected near existing trails due to accessibility 

constraints, introducing a sampling bias. Although the sampled areas show relatively lower slopes in 

natural regrowth and old-growth forests, other areas within these forest types are known to have 

steep slopes, which were not included in the sample. The plot selection based on proximity to trails 

may thus skew the interpretation. To accurately determine if there is a genuine difference in slope 

among the forest types, a more comprehensive study with additional, randomly distributed plots 

across the reserve would be necessary.  
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3.5 Relationship Analysis 

 

Given that none of the datasets met normality as indicated by the Shapiro-Wilk test, a nonparametric 

approach like the Spearman correlation initially seemed appropriate for examining relationships 

between slope, canopy cover, age, and carbon sequestration. This could be followed by multiple 

linear regression to quantify these relationships further. However, both methods assume linearity or 

monotonicity, which may not align with the complex, non-linear nature of ecological data, such as 

carbon sequestration. Fitting a linear regression model to non-linear data can lead to biassed 

estimates and misleading conclusions (Wassermann, 2006). 

 

For this reason, Generalised Additive Models (GAMs) were selected for their ability to handle 

non-linear relationships. GAMs fit smooth functions to predictors, allowing them to model complex 

ecological dynamics without assuming rigid linear trends. This flexibility makes them particularly 

useful for studying carbon sequestration. To assess how total carbon sequestration rates are 

influenced by slope, canopy cover, and age, a GAM was selected to analyse the relationships between 

these variables. Next to accommodating non-linear relationships, GAMs allow each predictor to have 

an independent, additive effect on the response variable—in this case, carbon sequestration. This 

makes GAMs a flexible choice when domain knowledge suggests that each variable contributes 

independently to the target variable (Gomez-Rubio, 2018). 

 

As described above, in this study, canopy cover was found to have minimal variation between forest 

types, suggesting that it likely does not contribute significantly to differences in sequestration rates 

across these forests. Additionally, observed differences in slope between forest types appear to reflect 

random variation rather than systematic age-related patterns. Consequently, it was deemed 

appropriate to treat canopy cover, slope, and age as independent factors affecting carbon 

sequestration. Using a GAM enables a more refined exploration of how each of these factors 

individually influences sequestration rates, providing insights that might be missed by models 

assuming strictly linear or interactive effects. It is important to note, however, that other variables 

may also influence carbon sequestration, but these have not been thoroughly examined in this study.  

  

The GAM was applied to the entire dataset, incorporating planted, natural regrowth, and old-growth 

forest types. This approach was selected to capture general trends across all forest types, minimising 

the risk of over-interpreting sparse data, particularly for old-growth forests, which only had a single 

time point. A forest-type-specific GAM would have been unfeasible, as it would have been limited to 

only three time points per forest type for planted and natural regrowth forests, and a single time 

point for old-growth, making it impossible to model old-growth data effectively. Analysing the data 

as a whole allowed for a broader understanding of how age, slope, and canopy cover influence carbon 

sequestration across the reserve, even though it meant that specific forest-type effects could not be 

fully explored, which could be focussed on in future research with more time points available.  
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Figure 12 - Effects of Slope, Canopy Cover and Age on Total Carbon Sequestration.​
Note. Derived from R Studio. 

 

Figure 12 and the printed statistical values reveal following key insights about the model:  

 

Slope: The relationship between slope and carbon sequestration is nearly linear (edf = 1.990), 

though the effect is marginally non-significant (p = 0.09788). The plot suggests that slope has a weak 

influence on total carbon sequestration, with a nearly flat relationship observed within the data 

range. With a larger dataset, slope may show stronger associations, particularly in areas with greater 

variation in topography. 

 

Canopy Cover: Similar to slope, canopy cover exhibits a weak association with carbon 

sequestration (F-statistic = 56.61, p = 0.084), with a nearly flat relationship. However, canopy 

cover could become a more significant factor with a larger dataset, especially if there is greater 

variability in canopy density across forest types. 

 

Age: The relationship between age and carbon sequestration is strong and non-linear (edf = 1.999, p 

= 0.00211). This confirms that age is a significant predictor, with older forests storing more 

carbon due to biomass accumulation over time. The non-linear pattern reflects rapid carbon 

uptake in younger forests, followed by a stabilisation as they mature. 

 

Intercept: The intercept is statistically significant, with an estimate of 0.4601723 (p = 0.00119), 

representing the baseline total carbon sequestration rate when all predictors are at their reference 

level. 

 

Model Fit: The model explains 100% of the variance (R-squared = 1), but given the small sample 

size (n = 7), this may indicate overfitting. The GAM's flexibility was constrained by setting a low 
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number of degrees of freedom (k=3), which helps mitigate overfitting and ensures that the model 

focuses on broad trends rather than overly complex curves. 

 

Although this analysis found that age was the most significant factor affecting carbon sequestration 

levels, other studies have highlighted the potential impact of variables like slope and canopy cover. 

Research indicates that canopy cover, in particular, is often positively correlated with carbon 

sequestration. For instance, in studies conducted in Ethiopia, although proven in a different 

ecosystem, increased canopy cover has been shown to enhance aboveground biomass carbon stocks 

(Solomon et al., 2024), suggesting that forests with denser canopies tend to sequester more carbon​. 
Conversely, more open canopies in younger forests might suggest faster growth phases, contributing 

to different sequestration dynamics (Bonan, 2023). 

 

Similarly, slope also plays a role in carbon storage, with some studies showing that both slope and 

elevation can significantly influence carbon sequestration rates.​ In general, slope can affect soil 

moisture, erosion, and tree stability, which all play roles in tree growth and, consequently, carbon 

sequestration rates. Steeper slopes may experience more runoff and soil loss, potentially reducing 

growth rates, while gentler slopes might retain moisture better, supporting more biomass (Grebner et 

al., 2022). More specifically, Singh & Benbi (2018) have proven the slope position significantly affects 

carbon sequestration in soils. The study found that the highest carbon were observed at hilltops and 

back slopes, while bottomlands showed a decrease and back slopes under erosion had the lowest 

values. This indicates that higher elevations tend to sequester more carbon compared to lower, 

eroded positions. Furthermore, the quality of organic matter also varies with slope position. Hilltop 

soils had a greater proportion of recalcitrant organic matter, which is more stable and less prone to 

decomposition. In contrast, middle slope soils had a higher proportion of labile organic matter, 

making them more susceptible to loss (Singh & Benbi, 2018). Although current data does not yet 

confirm the effects of varying slope values, further research is necessary to explore how the slopes at 

Cloudbridge might influence tree carbon accumulation across the reserve. 

 

In this context, expanding the dataset at Cloudbridge could reveal stronger and more statistically 

significant relationships between these environmental variables and carbon sequestration. With 

long-term observations, more data points collected and additional variability in the data, it would be 

possible to explore how slope and canopy cover, alongside other factors, contribute to carbon storage 

across different forest types more thoroughly. This approach may also help refine understanding of 

how forest management practices could optimise carbon sequestration in reforestation efforts. 

 

 

3.6 Limitations 

 

The limitations in this research stem from both methodological constraints and data availability 

impacting the accuracy of insights into carbon sequestration patterns across forest types.  

 

3.6.1 Data Collection 

 

The data collection process faced several limitations that impacted the accuracy and 

comprehensiveness of the carbon estimates in this study. Measuring tree heights was challenging, 

particularly for very tall trees, as the clinometer used occasionally struggled to provide precise 

measurements at extreme heights and very dense canopy cover that limited visibility. This may have 

introduced some inaccuracies in the height data, subsequently affecting the carbon calculations for 

these trees.  

 

Additionally, for the natural regrowth plots at El Jilguero (2008), the available area was so small and 

mostly inaccessible due to steep slopes, that setting up more than two plots would have been very 

difficult. This limits the data robustness for this site. 

 

Resource limitations of the researcher also impacted the scope of data collection. To simplify 
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measurements within the time available, only trees with a diameter at breast height (DBH) of 10 cm 

or greater were included. However, both the planted and natural regrowth forests contained 

substantial growth below this threshold, meaning younger and thinner trees, which also sequester 

carbon, were excluded from analysis. This exclusion likely led to an underestimation of carbon stocks 

in these areas. In contrast, nearly every tree in the old-growth forest met the DBH threshold, so 

carbon estimates in this forest type may be more comprehensive. 

This DBH threshold also excluded non-tree carbon sources, such as ground vegetation, deadwood, 

leaf litter, and soil organic carbon, all of which contribute significantly to total ecosystem carbon 

storage. Without these components, the data do not capture the full scope of the forest’s carbon cycle, 

including processes like decomposition and nutrient cycling that affect long-term carbon 

sequestration. 

 

3.6.2 Limited Data Availability  

 
Furthermore, several data limitations affected the scope of this analysis. First, a limitation involves 

the varying time frames of data collection across forest types. The planted forest areas have shorter, 

more recent time windows than the natural regrowth sections, which span longer periods, as 

Cloudbridge began natural reforestation efforts earlier than active planting. These differing time 

frames make direct comparisons across forest types challenging. Additionally, only one data point is 

available for the old-growth forest, which restricts any assessment of carbon accumulation rates over 

time. Given that the forest was last cut in the 1930s, all measurements for old-growth forest 

represent a single time point. 

 

Secondly, with the available data, it was not feasible to model future growth, which would have 

provided valuable insights. This analysis offers only a snapshot of current carbon stocks across 

different forest types, allowing for an understanding of carbon storage capacity but limiting insight 

into long-term growth trends. Consequently, accurately estimating future carbon sequestration rates 

is challenging with the limited temporal data points available. 

 

Species identification also posed a limitation. Due to the extreme height of many trees, leaves were 

often difficult to observe, making accurate species identification and use of precise allometric 

equations for wood density challenging. This constraint could slightly reduce the accuracy of carbon 

estimates. 

 

Data may also be skewed by inconsistencies in tree ages within each forest section. While each forest 

type generally aligns with a certain planting or growth period, some sections contain trees older than 

the documented start date. This variability could affect the accuracy of time-specific carbon 

sequestration data, as trees not representative of the designated growth period were included in 

measurements. 

 

3.6.3 Data Analysis Limitations 

 

Firstly, limited statistical expertise presented some constraints in the analysis, potentially resulting 

in overlooked techniques or misapplied analyses. Errors may have occurred in developing or 

interpreting R code, which could impact the accuracy of findings. 

 

More specifically in regards to the GAM analysis, this approach is partly constrained by a small 

sample size, limiting its ability to capture complex relationships, particularly regarding slope and 

canopy cover variables. Additionally, the model does not adequately represent old-growth forest 

behaviour due to the lack of multiple time points, raising the risk of overfitting given the dataset’s 

small size. The high R-squared value may also overstate the model's capacity to generalise beyond 

this dataset. 
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3.6.4 Geographic Limitations 

 

Geographic limitations further constrained the study, as data collection was restricted to plots 

located along accessible trails. The dense vegetation and steep slopes of the forest made it difficult to 

access other areas, limiting the analysis to only those portions of the forest next to the trails. This 

restriction means that the sampled plots may not accurately reflect the growth conditions or carbon 

sequestration potential of the entire forest. The trees along the trails might differ in characteristics, 

such as growth rates and biomass, from those in the interior of the forest, potentially leading to a 

skewed representation of the overall forest ecosystem. 

 

3.7 Future recommendations 

 
Future research with more comprehensive data across all forest types will help refine these 

preliminary findings and offer a clearer understanding of how total and especially annual 

sequestration rates evolve over time in each forest type. Expanding the range of variables 

assessed—such as temperature, microclimate variations, humidity, soil composition, wood density, 

climate change impacts—could provide valuable insights into their impacts on carbon sequestration. 

Additionally, measuring non-tree carbon sources such as soil carbon, deadwood, and litter would 

enhance our understanding of the broader carbon cycle and its role in sequestration. 

 

Establishing permanent plots at Cloudbridge would enable accurate tracking of carbon accumulation 

and allow for better estimation of biomass stocks and changes over time. With more data, 

comparisons between planted and natural regrowth forests could be improved, offering guidance on 

land management practices that optimise carbon sequestration—particularly relevant in the context 

of climate change mitigation. If permanent plots are not feasible, increasing the number of plots at 

each time point and expanding this approach in future years would provide more robust data on how 

each forest type sequesters carbon over time. 

 

Since part of the planted area at Cloudbridge is affected by an unidentified tree disease, comparing 

the impacted sections—planted between 2010 and 2011—with healthy sections from the same period 

(e.g., El Jilguero Planted 2011A & B) would be valuable. Initial data from one affected plot indicate 

significantly lower AGB and carbon values, suggesting that these sections may struggle to accumulate 

carbon at the same rate. This finding, coupled with the tendency for monocultures and low-diversity 

stands to be more susceptible to pests and diseases, could inform management practices for 

Cloudbridge’s reforestation efforts. 

 

For future research, modelling future carbon sequestration over time would provide valuable 

insights. With limited time points available, particularly in the planted sections, continuing 

observations and incorporating data from future observations will improve the accuracy of future 

sequestration rate predictions. With more data, it would also be possible to fit GAMs for each forest 

type, allowing a deeper understanding of how various variables influence carbon sequestration 

within each forest type. This could complement the current GAM that examines all forest types 

together. 

 

Furthermore, using advanced forest analysis techniques, such as those found in R libraries like 

forestSOM, FVS (Forest Vegetation Simulator), and biomass, could provide more accurate insights 

into carbon sequestration at Cloudbridge.  

 

Another potential avenue for future research is the inclusion of smaller trees (those under 10 cm 

DBH), which could better account for carbon storage in younger forests.  

 

Moreover, scaling plot-level measurements to the reserve’s entire area would also help provide 

insights into the overall carbon sequestration rate at Cloudbridge. This is useful for understanding 

how carbon sequestration at a small, localised level (i.e., individual plots) translates to the larger, 
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overall forest ecosystem. It also provides a more accurate estimate of the total carbon sequestration 

across the entire reserve and can in turn help to understand the reserve’s contribution to regional 

carbon storage efforts. Satellite data or aerial imagery could be used to map forest cover, density, and 

changes over time, enabling a more comprehensive view of forest dynamics at a landscape scale. 

 

Further statistical testing of variables such as slope and canopy cover would clarify whether within 

this research observed differences between forest types are statistically significant and meaningful.  

Additionally, accurately identifying each tree in the plots would facilitate the use of more precise 

allometric equations for biomass calculation, improving the accuracy of carbon sequestration 

estimates. Moreover, after gathering more data, exploring methods and calculating results for annual 

sequestration rates could provide valuable insights into how carbon is accumulated on a year-by-year 

basis over time. 

Finally, some literature research could be conducted to understand what factors contribute to 

variations in carbon sequestration between old-growth, replanted, and naturally regenerated forest 

types at Cloudbridge. Additionally, researching what forest management practices could optimise 

carbon capture potential within all three forest types. 

4. Conclusion  

 
In conclusion, this study provides valuable insights into how carbon sequestration rates vary across 

planted, naturally regenerated, and old-growth forests at Cloudbridge Nature Reserve. The first 

research question, regarding the variation in carbon sequestration rates over time, reveals that 

old-growth forests sequester significantly more carbon than both natural regrowth and planted 

forests, highlighting the greater stability and carbon storage capacity of mature ecosystems. While 

natural regrowth sections, especially the 1988 section, show slower carbon accumulation, likely due 

to competition with other vegetation, planted forests seem to capture carbon more quickly in their 

early stages due to reduced competition and human facilitation. 

 

The second research question, which examines how total carbon sequestration is influenced by 

factors like slope, canopy cover, and age, found that forest age is strongly linked to higher total 

carbon accumulation, with older forests storing more carbon overall. Although no significant impact 

of slope or canopy cover on carbon sequestration was detected in this dataset, canopy cover across all 

forest types shows similar values, indicating healthy forest development regardless of the 

management approach. Further research with expanded datasets and long-term monitoring is 

needed to explore these relationships more fully and understand how slope and other ecological 

factors might influence carbon dynamics over time. 

 

The importance of further research cannot be overstated. Long-term monitoring and additional data 

collection are vital to deepen the understanding of carbon sequestration dynamics at Cloudbridge. 

Such research could provide critical insights into how different forest management practices, 

topographic factors, and ecological conditions influence carbon storage over time. Expanding the 

scope of data and incorporating more frequent, longitudinal observations will allow for a more 

comprehensive analysis of the factors affecting carbon sequestration. This, in turn, will enable the 

development of more informed forest management strategies to optimise carbon capture potential 

and promote ecosystem resilience. In summary, while this study provides valuable insights into the 

current carbon sequestration potential of various forest types at Cloudbridge, ongoing research will 

be essential for refining our understanding and ensuring the effectiveness of conservation and 

reforestation efforts in the face of climate change. 
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7. Appendix 

 

 

Name of Plot GPS Coordinates 

EJ PLA 2008A 

-83.5784°, 9.4703° 

EJ PLA 2008B 

-83.5784°, 9.4702° 

LQ PLA 2009A 

-83.5661°, 9.4788° 

LQ PLA 2009B 

-83.5657°, 9.4789° 

EL PLA 2011A 

-83.5779°, 9.4714° 

EL PLA 2011B 

-83.5775°, 9.4717° 

EJ NR 1988A 

-83.5755°, 9.4688° 

EJ NR 1988B 

-83.5748°, 9.4685° 

MON NR 2004A 

-83.5662°, 9.4700° 

MON NR 2004B 

-83.5653°, 9.4684° 

EJ NR 2008A 

-83.5766°, 9.4694° 

EJ NR 2008B 

-83.5768°, 9.4700° 

EJ OG 

-83.5723°, 9.4666° 
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SENTI OG  

-83.5706°, 9.4715° 

MON OG  

-83.5653°, 9.4657° 

Table A1- GPS coordinates of each Plot.​
Note. Derived from QGIS. 

 

Species Forest Type Wood Density  

Quercus salicifolia Planted 0.67 

Cedrela tonduzii Planted 0.36 

Ulmus mexicana Planted 0.55 

Ocotea valeriana Planted ~0.65 

Heliocarpus appendiculatus Natural Regrowth  0.18 

Cecropia angustifolia Natural Regrowth  ~0.33 

Myrsine coriacea Natural Regrowth  0.7 

Inga sp Natural Regrowth  ~0.55 

Saurauia montana Natural Regrowth  ~0.43 

Saurauia pittieri Natural Regrowth  ~0.45 

Quercus salicifolia Old Growth  0.67 

Macrohaceltia macrotheranta Old Growth  Unknown  

Billia rosea Old Growth  Unknown  

Guatteria talamancana Old Growth  ~0.55 

Table A2- Most common Species per Forest Type with Respective Wood Density Values.​
Note. Derived from GlobalWoodDensityDatabase. 
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